Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 318
Filtrar
1.
Am J Sports Med ; 52(4): 1022-1031, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38353060

RESUMO

BACKGROUND: Achilles tendon ruptures often result in long-term functional deficits despite accelerated (standard) rehabilitation. PURPOSE/HYPOTHESIS: The purpose of this study was to investigate if delayed loading would influence functional, clinical, and structural outcomes of the muscles and tendon 1 year after a surgical repair. It was hypothesized that delaying the loading would reduce the heel-rise height deficit 1 year after Achilles tendon rupture. STUDY DESIGN: Randomized controlled trial; Level of evidence, 1. METHODS: In total, 48 patients with a surgically repaired Achilles tendon rupture were randomized to 2 groups: the standard group received the currently accepted rehabilitation, and the delayed group received the same rehabilitation except that initial loading was delayed by 6 weeks. The primary outcome was the heel-rise height difference between the injured and uninjured sides at 1 year. The secondary outcomes were (1) tendon length measured with magnetic resonance imaging, (2) muscle fascicle length and pennation angle of the gastrocnemius medialis muscle, (3) Doppler activity measured with ultrasonography, (4) Achilles tendon Total Rupture Score (ATRS), and (5) isometric muscle strength. RESULTS: The mean heel-rise height deficits for the standard and delayed groups were -2.2 cm and -2.1 cm, respectively (P = .719). The soleus part of the tendon was already elongated 1 week after surgery in both groups without a between-group difference (side-to-side difference: standard, 16.3 mm; delayed, 17.5 mm; P = .997) and did not change over 52 weeks. The gastrocnemius tendon length was unchanged at 1 week but elongated over time without a between-group difference (side-to-side difference at 52 weeks: standard, 10.5 mm; delayed, 13.0 mm; P = .899). The delayed group had less Doppler activity at 12 weeks (P = .006) and a better ATRS (standard, 60 points; delayed, 72 points; P = .032) at 52 weeks. CONCLUSION: Delayed loading was not superior to standard loading in reducing the heel-rise height difference at 1 year. The data indirectly suggested reduced inflammation in the initial months and a better patient-reported outcome at 1 year in the delayed group. The soleus part of the tendon was already markedly elongated (35%) 1 week after surgery, while the length of the gastrocnemius tendon was unchanged at 1 week but was 6% elongated at 1 year. Together, these data indirectly suggest that the delayed group fared better, although this finding needs to be confirmed in future investigations. REGISTRATION: NCT04263493 (ClinicalTrials.gov identifier).


Assuntos
Tendão do Calcâneo , Traumatismos do Tornozelo , Traumatismos dos Tendões , Humanos , Resultado do Tratamento , Ruptura , Calcanhar , Músculo Esquelético
2.
BMJ Open ; 14(1): e078501, 2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38286704

RESUMO

INTRODUCTION: The population-based Inter99 cohort has contributed extensively to our understanding of effects of a systematic screening and lifestyle intervention, as well as the multifactorial aetiology of type 2 diabetes (T2D) and cardiovascular disease. To understand causes, trajectories and patterns of early and overt cardiometabolic disease manifestations, we will perform a combined clinical deep phenotyping and registry follow-up study of the now 50-80 years old Inter99 participants. METHODS AND ANALYSIS: The Inter99 cohort comprises individuals aged 30-60 years, who lived in a representative geographical area of greater Copenhagen, Denmark, in 1999. Age-stratified and sex-stratified random subgroups were invited to participate in either a lifestyle intervention (N=13 016) or questionnaires (N=5264), while the rest served as a reference population (N=43 021). Of the 13 016 individuals assigned to the lifestyle intervention group, 6784 (52%) accepted participation in a baseline health examination in 1999, including screening for cardiovascular risk factors and prediabetic conditions. In total, 6004 eligible participants, who participated in the baseline examination, will be invited to participate in the deep phenotyping 20-year follow-up clinical examination including measurements of anthropometry, blood pressure, arterial stiffness, cardiometabolic biomarkers, coronary artery calcification, heart rate variability, heart rhythm, liver stiffness, fundus characteristics, muscle strength and mass, as well as health and lifestyle questionnaires. In a subsample, 10-day monitoring of diet, physical activity and continuous glucose measurements will be performed. Fasting blood, urine and faecal samples to be stored in a biobank. The established database will form the basis of multiple analyses. A main purpose is to investigate whether low birth weight independent of genetics, lifestyle and glucose tolerance predicts later common T2D cardiometabolic comorbidities. ETHICS AND DISSEMINATION: The study was approved by the Medical Ethics Committee, Capital Region, Denmark (H-20076231) and by the Danish Data Protection Agency through the Capital Region of Denmark's registration system (P-2020-1074). Informed consent will be obtained before examinations. Findings will be disseminated in peer-reviewed journals, at conferences and via presentations to stakeholders, including patients and public health policymakers. TRIAL REGISTRATION NUMBER: NCT05166447.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Humanos , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Diabetes Mellitus Tipo 2/epidemiologia , Seguimentos , Doenças Cardiovasculares/prevenção & controle , Sistema de Registros , Glucose
3.
J Cachexia Sarcopenia Muscle ; 15(1): 306-318, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38123165

RESUMO

BACKGROUND: Age-related loss of strength is disproportionally greater than the loss of mass, suggesting maladaptations in the neuro-myo-tendinous system. Myofibers are often misshaped in aged and diseased muscle, but systematic analyses of large sample sets are lacking. Our aim was to investigate myofiber shape in relation to age, exercise, myofiber type, species and sex. METHODS: Vastus lateralis muscle biopsies (n = 265) from 197 males and females, covering an age span of 20-97 years, were examined. The gastrocnemius and soleus muscles of 11 + 22-month-old male C57BL/6 mice were also examined. Immunofluorescence and ATPase stainings of muscle cross-sections were used to measure myofiber cross-sectional area (CSA) and perimeter. From these, a shape factor index (SFI) was calculated in a fibre-type-specific manner (type I/II in humans; type I/IIa/IIx/IIb in mice), with higher values indicating increased deformity. Heavy resistance training (RT) was performed three times per week for 3-4 months by a subgroup (n = 59). Correlation analyses were performed comparing SFI and CSA with age, muscle mass, maximal voluntary contraction (MVC), rate of force development and specific force (MVC/muscle mass). RESULTS: In human muscle, SFI was positively correlated with age for both type I (R2  = 0.20) and II (R2  = 0.38) myofibers. When subjects were separated into age cohorts, SFI was lower for type I (4%, P < 0.001) and II (6%, P < 0.001) myofibers in young (20-36) compared with old (60-80) and higher for type I (5%, P < 0.05) and II (14%, P < 0.001) myofibers in the oldest old (>80) compared with old. The increased SFI in old muscle was observed in myofibers of all sizes. Within all three age cohorts, type II myofiber SFI was higher than that for type I myofiber (4-13%, P < 0.001), which was also the case in mice muscles (8-9%, P < 0.001). Across age cohorts, there was no difference between males and females in SFI for either type I (P = 0.496/0.734) or II (P = 0.176/0.585) myofibers. Multiple linear regression revealed that SFI, after adjusting for age and myofiber CSA, has independent explanatory power for 8/10 indices of muscle mass and function. RT reduced SFI of type II myofibers in both young and old (3-4%, P < 0.001). CONCLUSIONS: Here, we identify type I and II myofiber shape in humans as a hallmark of muscle ageing that independently predicts volumetric and functional assessments of muscle health. RT reverts the shape of type II myofibers, suggesting that a lack of myofiber recruitment might lead to myofiber deformity.


Assuntos
Doenças Musculares , Treinamento de Força , Feminino , Humanos , Masculino , Camundongos , Animais , Idoso de 80 Anos ou mais , Idoso , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Lactente , Pré-Escolar , Fibras Musculares Esqueléticas/patologia , Camundongos Endogâmicos C57BL , Músculo Esquelético/patologia , Envelhecimento/fisiologia , Doenças Musculares/patologia
4.
Heliyon ; 9(10): e20534, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37818016

RESUMO

Physical activity (PA) promotes brain health in a variety of domains including cognition, mood, and neuroplasticity. At the neurochemical level, the mechanisms underlying these effects in the brain are not fully understood. With proton Magnetic Resonance Spectroscopy (1H-MRS), it is possible to non-invasively quantify metabolite concentrations, enabling studies to obtain measures of exercise-induced neurochemical changes. This systematic review aimed to examine the existing literature on acute effects of PA on brain metabolites as measured by 1H-MRS. Four databases (Cochrane Central Register of Controlled Trials, PubMed, Embase, and PsycINFO) were searched, identifying 2965 studies, of which 9 met the inclusion criteria. Across studies, Gamma-AminoButyric Acid (GABA) and lactate tended to increase after exercise, while no significant changes in choline were reported. For glutamine/glutamate (Glx), studies were inconclusive. Conclusions were limited by the lack of consensus on 1H-MRS data processing and exercise protocols. To reduce inter-study differences, future studies are recommended to (1): apply a standardized exercise index (2), consider the onset time of MRS scans, and (3) follow standardized MRS quantification methods.

5.
Skelet Muscle ; 13(1): 13, 2023 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-37573332

RESUMO

BACKGROUND: The occurrence of hyperplasia, through myofibre splitting, remains a widely debated phenomenon. Structural alterations and fibre typing of skeletal muscle fibres, as seen during regeneration and in certain muscle diseases, can be challenging to interpret. Neuromuscular electrical stimulation can induce myofibre necrosis followed by changes in spatial and temporal cellular processes. Thirty days following electrical stimulation, remnants of regeneration can be seen in the myofibre and its basement membrane as the presence of small myofibres and encroachment of sarcolemma and basement membrane (suggestive of myofibre branching/splitting). The purpose of this study was to investigate myofibre branching and fibre type in a systematic manner in human skeletal muscle undergoing adult regenerative myogenesis. METHODS: Electrical stimulation was used to induce myofibre necrosis to the vastus lateralis muscle of one leg in 5 young healthy males. Muscle tissue samples were collected from the stimulated leg 30 days later and from the control leg for comparison. Biopsies were sectioned and stained for dystrophin and laminin to label the sarcolemma and basement membrane, respectively, as well as ATPase, and antibodies against types I and II myosin, and embryonic and neonatal myosin. Myofibre branches were followed through 22 serial Sects. (264 µm). Single fibres and tissue blocks were examined by confocal and electron microscopy, respectively. RESULTS: Regular branching of small myofibre segments was observed (median length 144 µm), most of which were observed to fuse further along the parent fibre. Central nuclei were frequently observed at the point of branching/fusion. The branch commonly presented with a more immature profile (nestin + , neonatal myosin + , disorganised myofilaments) than the parent myofibre, together suggesting fusion of the branch, rather than splitting. Of the 210 regenerating muscle fibres evaluated, 99.5% were type II fibres, indicating preferential damage to type II fibres with our protocol. Furthermore, these fibres demonstrated 7 different stages of "fibre-type" profiles. CONCLUSIONS: By studying the regenerating tissue 30 days later with a range of microscopy techniques, we find that so-called myofibre branching or splitting is more likely to be fusion of myotubes and is therefore explained by incomplete regeneration after a necrosis-inducing event.


Assuntos
Fibras Musculares Esqueléticas , Músculo Esquelético , Masculino , Adulto , Recém-Nascido , Humanos , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/patologia , Regeneração/fisiologia , Miosinas , Necrose/patologia
6.
Neurobiol Aging ; 131: 115-123, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37619515

RESUMO

Modifiable lifestyle factors have been shown to promote healthy brain ageing. However, studies have typically focused on a single factor at a time. Given that lifestyle factors do not occur in isolation, multivariable analyses provide a more realistic model of the lifestyle-brain relationship. Here, canonical correlation analyses (CCA) examined the relationship between nine lifestyle factors and seven MRI-derived indices of brain structure. The resulting covariance pattern was further explored with Bayesian regressions. CCA analyses were first conducted on a Danish cohort of older adults (n = 251) and then replicated in a British cohort (n = 668). In both cohorts, the latent factors of lifestyle and brain structure were positively correlated (UK: r = .37, p < 0.001; Denmark: r = .27, p < 0.001). In the cross-validation study, the correlation between lifestyle-brain latent factors was r = .10, p = 0.008. However, the pattern of associations differed between datasets. These findings suggest that baseline characterisation and tailoring towards the study sample may be beneficial for achieving targeted lifestyle interventions.


Assuntos
Envelhecimento , Encéfalo , Humanos , Idoso , Teorema de Bayes , Encéfalo/diagnóstico por imagem , Estilo de Vida , Imageamento por Ressonância Magnética
7.
Scand J Med Sci Sports ; 33(12): 2585-2597, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37621063

RESUMO

BACKGROUND: Muscle strain injuries in the human calf muscles are frequent sports injuries with high recurrence. Potential structural and functional changes in the medial head of the musculus gastrocnemius (GM) and the associated aponeurosis are not well documented. PURPOSE: To test whether a GM muscle strain injury affects muscle fascicle length, pennation angle, and the morphology of the deep aponeurosis at rest and during muscle contraction long time after the injury. Additionally, electromyography (EMG) of the GM and the soleus muscle during a unilateral heel rise was measured in the injured and uninjured calf. METHODS: GM fascicle length, pennation angle, and aponeurosis thickness was analyzed on dynamic ultrasonography (US) recordings in 10 participants with a chronic calf strain. In addition, US images taken across the distal portion and mid-belly of the GM were analyzed at three different ankle positions. EMG recordings were obtained during a unilateral heel rise. RESULTS: The pennation angle of the injured distal GM was significantly larger compared to the uninjured GM in the contracted, but not the relaxed state. Pennation angle increased more in the injured compared to the uninjured GM during contraction. Fascicle length was shorter in the most distal portion of the injured GM. Fascicles at the distal portion of the injured GM showed a pronounced curvilinear shape as the muscle contracted and the aponeurosis was enlarged in the injured compared to the uninjured GM. The ratio between GM and soleus EMG activity showed a significantly higher relative soleus activity in the injured compared to the healthy calf. CONCLUSION: The greater change in pennation angle and curvilinear fascicle shape during contraction suggest that a long-term consequence after a muscle strain injury is that some muscle fibers at the distal GM are not actively engaged. The significantly enlarged aponeurosis indicates a substantial and long-lasting connective tissue involvement following strain injuries.


Assuntos
Aponeurose , Entorses e Distensões , Humanos , Aponeurose/diagnóstico por imagem , Músculo Esquelético/fisiologia , Eletromiografia , Fibras Musculares Esqueléticas , Contração Muscular/fisiologia , Ultrassonografia , Entorses e Distensões/diagnóstico por imagem
8.
Am J Sports Med ; 51(9): 2396-2403, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37313851

RESUMO

BACKGROUND: An Achilles tendon rupture (ATR) is a frequent injury and results in the activation of tendon cells and collagen expression, but it is unknown to what extent turnover of the tendon matrix is altered before or after a rupture. PURPOSE/HYPOTHESIS: The purpose of this study was to characterize tendon tissue turnover before and immediately after an acute rupture in patients. It was hypothesized that a rupture would result in pronounced collagen synthesis in the early phase (first 2 weeks) after the injury. STUDY DESIGN: Cross-sectional study; Level of evidence, 3. METHODS: The study included patients (N = 18) eligible for surgery after an ATR. At the time of inclusion, the patients ingested deuterium oxide (2H2O) orally, and on the day of surgery (within 14 days of the injury), they received a 3-hour flood-primed infusion of an 15N-proline tracer. During surgery, the patients had 1 biopsy specimen taken from the ruptured part of the Achilles tendon and 1 that was 3 to 5 cm proximal to the rupture as a control. The biopsy specimens were analyzed for carbon-14 (14C) levels in the tissue to calculate long-term turnover (years), incorporation of 2H-alanine (from 2H2O) into the tissue to calculate the fractional synthesis rate (FSR) of proteins in the short term (days), and incorporation of 15N-proline into the tissue to calculate the acute FSR (hours). RESULTS: Both the rupture and the control samples showed consistently lower levels of 14C compared with the predicted level of 14C in a healthy tendon, which indicated increased tendon turnover in a fraction (48% newly synthesized) of the Achilles tendon already for a prolonged period before the rupture. Over the first days after the rupture, the synthesis rate for collagen was relatively constant, and the average synthesis rate on the day of surgery (2-14 days after the rupture) was 0.025% per hour, irrespective of the length of time after a rupture and the site of sampling (rupture vs control). No differences were found in the FSR between the rupture and control samples in the days after the rupture. CONCLUSION: Higher than normal tissue turnover in the Achilles tendon before a rupture indicated that changes in the tendon tissue preceded the injury. In addition, we observed no increase in tendon collagen tissue turnover in the first 2 weeks after an ATR. This favors the view that an increase in the formation of new tendon collagen is not an immediate phenomenon during the regeneration of ruptured tendons in patients. REGISTRATION: NCT03931486 (ClinicalTrials.gov identifier).


Assuntos
Tendão do Calcâneo , Traumatismos dos Tendões , Humanos , Tendão do Calcâneo/lesões , Radioisótopos de Carbono/metabolismo , Estudos Transversais , Colágeno/metabolismo , Ruptura/cirurgia , Ruptura/patologia , Traumatismos dos Tendões/patologia
9.
J Appl Physiol (1985) ; 135(2): 326-333, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37348011

RESUMO

Permanent loss of muscle function seen after an Achilles tendon rupture may partly be explained by tendon elongation and accompanying shortening of the muscle. Muscle fascicle length shortens, serial sarcomere number is reduced, and the sarcomere length is unchanged after Achilles tendon transection (ATT), and these changes are mitigated with suturing. The method involved in this study was a controlled laboratory study. Two groups of rats underwent ATT on one side with a contralateral control (CTRL): A) ATT with 3 mm removal of the Achilles tendon and no suturing (substantial tendon elongation), and B) ATT with suture repair (minimal tendon elongation). The operated limb was immobilized for 2 wk to reduce load. Four weeks after surgery the rats were euthanized, and hindlimbs were analyzed for tendon length, gastrocnemius medialis (GM) muscle mass, length, fascicle length, sarcomere number and length. No differences were observed between the groups, and in both groups the Achilles tendon length was longer (15.2%, P < 0.001), GM muscle mass was smaller (17.5%, P < 0.001), and muscle length was shorter (8.2%, P < 0.001) on the ATT compared with CTRL side. GM fascicle length was shorter (11.2%, P < 0.001), and sarcomere number was lower (13.8%, P < 0.001) on the ATT side in all regions. Sarcomere length was greater in the proximal (5.8%, P < 0.001) and mid (4.2%, P = 0.003), but not distal region on the ATT side. In this animal model, regardless of suturing, ATT resulted in tendon elongation, loss of muscle mass and length, and reduced serial sarcomere number, which resulted in an "overshoot" lengthening of the sarcomeres.NEW & NOTEWORTHY Following acute Achilles tendon rupture, patients are often left with functional deficits. The specific reason remains largely unknown. The shortened muscle leads to reduced fascicle length, in turn leading to adaptation by reduced serial sarcomere numbers. Surprisingly, this adaptation appears to "overshoot" and lead to increased sarcomere length. The present animal model advances understanding of how muscle sarcomeres, which are difficult to measure in humans, are affected when undue elongation takes place after tendon rupture.


Assuntos
Tendão do Calcâneo , Músculo Esquelético , Humanos , Feminino , Animais , Ratos , Tendão do Calcâneo/lesões , Tendão do Calcâneo/fisiologia , Músculo Esquelético/fisiologia , Adaptação Fisiológica , Sarcômeros/fisiologia , Ruptura
10.
Hum Brain Mapp ; 44(11): 4299-4309, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37219945

RESUMO

Understanding individual variability in response to physical activity is key to developing more effective and personalised interventions for healthy ageing. Here, we aimed to unpack individual differences by using longitudinal data from a randomised-controlled trial of a 12-month muscle strengthening intervention in older adults. Physical function of the lower extremities was collected from 247 participants (66.3 ± 2.5 years) at four time-points. At baseline and at year 4, participants underwent 3 T MRI brain scans. K-means longitudinal clustering was used to identify patterns of change in chair stand performance over 4 years, and voxel-based morphometry was applied to map structural grey matter volume at baseline and year 4. Results identified three groups showing trajectories of poor (33.6%), mid (40.1%), and high (26.3%) performance. Baseline physical function, sex, and depressive symptoms significantly differed between trajectory groups. High performers showed greater grey matter volume in the motor cerebellum compared to the poor performers. After accounting for baseline chair stand performance, participants were re-assigned to one of four trajectory-based groups: moderate improvers (38.9%), maintainers (38.5%), improvers (13%), and decliners (9.7%). Clusters of significant grey matter differences were observed between improvers and decliners in the right supplementary motor area. Trajectory-based group assignments were unrelated to the intervention arms of the study. In conclusion, patterns of change in chair stand performance were associated with greater grey matter volumes in cerebellar and cortical motor regions. Our findings emphasise that how you start matters, as baseline chair stand performance was associated with cerebellar volume 4 years later.


Assuntos
Córtex Cerebral , Substância Cinzenta , Humanos , Idoso , Substância Cinzenta/diagnóstico por imagem , Neuroimagem , Imageamento por Ressonância Magnética/métodos , Cerebelo
11.
J Cell Sci ; 136(8)2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36924352

RESUMO

The myotendinous junction (MTJ) is a specialized domain of the multinucleated myofibre that is faced with the challenge of maintaining robust cell-matrix contact with the tendon under high mechanical stress and strain. Here, we profiled 24,124 nuclei in semitendinosus muscle-tendon samples from three healthy males by using single-nucleus RNA sequencing (snRNA-seq), alongside spatial transcriptomics, to gain insight into the genes characterizing this specialization in humans. We identified a cluster of MTJ myonuclei represented by 47 enriched transcripts, of which the presence of ABI3BP, ABLIM1, ADAMTSL1, BICD1, CPM, FHOD3, FRAS1 and FREM2 was confirmed at the MTJ at the protein level in immunofluorescence assays. Four distinct subclusters of MTJ myonuclei were apparent, comprising two COL22A1-expressing subclusters and two subclusters lacking COL22A1 expression but with differing fibre type profiles characterized by expression of either MYH7 or MYH1 and/or MYH2. Our findings reveal distinct myonuclei profiles of the human MTJ, which represents a weak link in the musculoskeletal system that is selectively affected in pathological conditions ranging from muscle strains to muscular dystrophies.


Assuntos
Junção Miotendínea , Tendões , Masculino , Humanos , Tendões/fisiologia , Núcleo Celular/metabolismo , Músculo Esquelético/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas com Domínio LIM/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Forminas/metabolismo
12.
J Appl Physiol (1985) ; 134(5): 1278-1286, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36995911

RESUMO

Both aging and physical activity can influence the amount of intramuscular connective tissue in skeletal muscle, but the impact of these upon specific extracellular matrix (ECM) proteins in skeletal muscle is unknown. We investigated the proteome profile of intramuscular connective tissue by label-free proteomic analysis of cellular protein-depleted extracts from lateral gastrocnemius muscle of old (22-23 mo old) and middle-aged (11 mo old) male mice subjected to three different levels of regular physical activity for 10 wk (high-resistance wheel running, low-resistance wheel running, or sedentary controls). We hypothesized that aging is correlated with an increased amount of connective tissue proteins in skeletal muscle and that regular physical activity can counteract these age-related changes. We found that dominating cellular proteins were diminished in the urea/thiourea extract, which was therefore used for proteomics. Proteomic analysis identified 482 proteins and showed enrichment for ECM proteins. Statistical analysis revealed that the abundances of 86 proteins changed with age. Twenty-three of these differentially abundant proteins were identified as structural ECM proteins (e.g., collagens and laminins) and all of these were significantly more abundant with aging. No significant effect of training or interaction between training and advance in age was found for any proteins. Finally, we found a lower protein concentration in the urea/thiourea extracts from the old mice compared with the middle-aged mice. Our findings indicate that the intramuscular ECM solubility is affected by increased age but is not altered by physical training.NEW & NOTEWORTHY We investigated the impact of aging and exercise on extracellular matrix components of intramuscular connective tissue using proteomics. Middle-aged and old mice were subjected to three different levels of regular physical activity for 10 wk (high-resistance wheel running, low-resistance wheel running, or sedentary controls). We prepared extracts of extracellular matrix proteins depleted of cellular proteins. Our findings indicate that intramuscular connective tissue alters its soluble protein content with age but is unaffected by training.


Assuntos
Condicionamento Físico Animal , Proteoma , Masculino , Camundongos , Animais , Proteoma/metabolismo , Proteômica , Atividade Motora , Músculo Esquelético/fisiologia , Envelhecimento/fisiologia , Tecido Conjuntivo , Proteínas da Matriz Extracelular/metabolismo
13.
J Physiol ; 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36810732

RESUMO

Overuse injury in tendon tissue (tendinopathy) is a frequent and costly musculoskeletal disorder and represents a major clinical problem with unsolved pathogenesis. Studies in mice have demonstrated that circadian clock-controlled genes are vital for protein homeostasis and important in the development of tendinopathy. We performed RNA sequencing, collagen content and ultrastructural analyses on human tendon biopsies obtained 12 h apart in healthy individuals to establish whether human tendon is a peripheral clock tissue and we performed RNA sequencing on patients with chronic tendinopathy to examine the expression of circadian clock genes in tendinopathic tissues. We found time-dependent expression of 280 RNAs including 11 conserved circadian clock genes in healthy tendons and markedly fewer (23) differential RNAs with chronic tendinopathy. Further, the expression of COL1A1 and COL1A2 was reduced at night but was not circadian rhythmic in synchronised human tenocyte cultures. In conclusion, day-to-night changes in gene expression in healthy human patellar tendons indicate a conserved circadian clock as well as the existence of a night reduction in collagen I expression. KEY POINTS: Tendinopathy is a major clinical problem with unsolved pathogenesis. Previous work in mice has shown that a robust circadian rhythm is required for collagen homeostasis in tendons. The use of circadian medicine in the diagnosis and treatment of tendinopathy has been stifled by the lack of studies on human tissue. Here, we establish that the expression of circadian clock genes in human tendons is time dependent, and now we have data to corroborate that circadian output is reduced in diseased tendon tissues. We consider our findings to be of significance in advancing the use of the tendon circadian clock as a therapeutic target or preclinical biomarker for tendinopathy.

14.
Tissue Eng Part A ; 29(9-10): 292-305, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36680754

RESUMO

Skeletal muscle possesses adaptability to mechanical loading and regenerative potential following muscle injury due to muscle stem cell activity. So far, it is known that muscle stem cell activity is supported by the roles of several interstitial cells within skeletal muscle in response to muscle damage. The adjacent tendon is also exposed to repetitive mechanical loading and possesses plasticity like skeletal muscle. However, the interplay between the skeletal muscle and adjacent tendon tissue has not been fully investigated. In this study, we tested whether factors released by three-dimensional engineered human tendon constructs in response to uniaxial tensile loading can stimulate the proliferation and differentiation of human-derived myogenic cells (myoblasts). Tendon constructs were subjected to repetitive mechanical loading (4% strain at 0.5 Hz for 4 h) and nonrepetitive loading (0% strain at 0 Hz for 4 h), and the conditioned media from mechanically loaded and nonmechanically loaded control constructs were applied to myoblasts. Immunofluorescence analysis revealed both an increase of myotube fusion index (≥5 nuclei within one desmin+ myotube) and the myotube diameter when conditioned medium from mechanically loaded tendon constructs was applied. Myostatin, myosin heavy chain 7, and AXIN2 gene expressions were downregulated in myotubes treated with conditioned medium from mechanically loaded tendon constructs. However, proliferative potential (number of Ki67+ and bromodeoxyuridine+ myoblasts) did not differ between the two groups. These results indicate that tendon fibroblasts enhance myotube formation by mechanical loading-induced factors. Our finding suggests that mechanical loading affects the signaling interplay between skeletal muscle and tendon tissue and is thus important for musculoskeletal tissue development and regeneration in humans. Impact statement The interplay between satellite cells and various types of resident cells within the skeletal muscle for muscle regeneration has been extensively studied. However, even though tendon tissue is located adjacent to skeletal muscle tissue and cells in these tissues are exposed to repetitive mechanical loading together, the interaction between muscle and tendon tissues for muscle regeneration remains to be elucidated. In this study, we report that the conditioned media from engineered human tendon tissues undergoing repetitive tensile mechanical loading enhanced myotube formation. Our in vitro findings extend the fundamental understanding of the crosstalk between adjacent tissues of the muscle-tendon unit.


Assuntos
Fibras Musculares Esqueléticas , Músculo Esquelético , Humanos , Meios de Cultivo Condicionados , Fibras Musculares Esqueléticas/metabolismo , Tendões , Engenharia Tecidual , Diferenciação Celular
15.
J Anat ; 242(2): 213-223, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36250976

RESUMO

Increasing age appears to influence several morphologic changes in major tendons. However, the effects of aging on the cross-sectional area (CSA) of different ankle tendons are much less understood. Furthermore, potential differences in specific tendon regions along the length of the tendons have not been investigated in detail. Sixty healthy adult participants categorized by age as young (n = 20; mean ± SD age = 22.5 ± 4.5 years), middle-age (n = 20; age = 40.6 ± 8. 0 years), or old (n = 20; age = 69.9 ± 9.1 years), from both sexes, were included. The tendon CSA of tibialis anterior (TA), tibialis posterior (TP), fibularis (FT), and Achilles (AT) was measured from T1-weighted 1.5 T MR images in incremental intervals of 10% along its length (from proximal insertion) and compared between different age groups and sexes. The mean CSA of the AT was greater in the middle-age group than both young and old participants (p < 0.01) and large effect sizes were observed for these differences (Cohen's d > 1). Furthermore, there was a significant difference in CSA in all three groups along the length of the different tendons. Region-specific differences between groups were observed in the distal portion (90% and 100% of the length), in which the FT presented greater CSA comparing middle-age to young and old (p < 0.05). In conclusion, (1) great magnitude of morpho-structural differences was discovered in the AT; (2) there are region-specific differences in the CSA of ankle tendons within the three groups and between them; and (3) there were no differences in tendon CSA between sexes.


Assuntos
Tendão do Calcâneo , Tornozelo , Masculino , Pessoa de Meia-Idade , Feminino , Humanos , Adolescente , Adulto Jovem , Adulto , Idoso , Músculo Esquelético , Articulação do Tornozelo/diagnóstico por imagem , Perna (Membro)
16.
Scand J Med Sci Sports ; 33(2): 136-145, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36226768

RESUMO

The myotendinous junction (MTJ) is structurally specialized to transmit force. The highly folded muscle membrane at the MTJ increases the contact area between muscle and tendon and potentially the load tolerance of the MTJ. Muscles with a high content of type II fibers are more often subject to strain injury compared with muscles with type I fibers. It is hypothesized that this is explained by a smaller interface area of MTJ in type II compared with type I muscle fibers. The aim was to investigate by confocal microscopy whether there is difference in the surface area at the MTJ between type I and II muscle fibers. Individual muscle fibers with an intact MTJ were isolated by microscopic dissection in samples from human semitendinosus, and they were labeled with antibodies against collagen XXII (indicating MTJ) and type I myosin (MHCI). Using a spinning disc confocal microscope, the MTJ from each fiber was scanned and subsequently reconstructed to a 3D-model. The interface area between muscle and tendon was calculated in type I and II fibers from these reconstructions. The MTJ was analyzed in 314 muscle fibers. Type I muscle fibers had a 22% larger MTJ interface area compared with type II fibers (p < 0.05), also when the area was normalized to fiber diameter. By the new method, it was possible to analyze the structure of the MTJ from a large number of human muscle fibers. The finding that the interface area between muscle and tendon is higher in type I compared with type II fibers suggests that type II fibers are less resistant to strain and therefore more susceptible to injury.


Assuntos
Junção Miotendínea , Tendões , Humanos , Tendões/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Fibras Musculares de Contração Rápida , Colágeno/fisiologia
17.
Connect Tissue Res ; 64(3): 285-293, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36576243

RESUMO

PURPOSE/AIM OF THE STUDY: Osteogenesis imperfecta is a heritable bone disorder that is usually caused by mutations in collagen type I encoding genes. The impact of such mutations on tendons, a structure with high collagen type I content, remains largely unexplored. We hypothesized that tendon properties are abnormal in the context of a mutation affecting collagen type I. The main purpose of the study was to assess the anatomical, mechanical, and material tendon properties of Col1a1Jrt/+ mice, a model of severe dominant OI. MATERIALS AND METHODS: The Flexor Digitorum Longus (FDL) tendon of Col1a1Jrt/+ mice and wild-type littermates (WT) was assessed with in vitro mechanical testing. RESULTS: The results showed that width and thickness of FDL tendons were about 40% larger in WT (p < 0.01) than in Col1a1Jrt/+ mice, whereas the cross-sectional area was 138% larger (p < 0.001). The stiffness, peak- and yield-force were between 160% and 194% higher in WT vs. Col1a1Jrt/+ mice. The material properties did not show significant differences between mouse strains with differences <15% between WT and Col1a1Jrt/+ (p > 0.05). Analysis of the Achilles tendon collagen showed no difference between mice strains for the content but collagen solubility in acetic acid was 66% higher in WT than in Col1a1Jrt/+ (p < 0.001). CONCLUSIONS: This study shows that the FDL tendon of Col1a1Jrt/+ mice has reduced mechanical properties but apparently normal material properties. It remains unclear whether the tendon phenotype of Col1a1Jrt/+ mice is secondary to muscle weakness or a direct effect of the Col1a1 mutation or a combination of both.


Assuntos
Osteogênese Imperfeita , Camundongos , Animais , Osteogênese Imperfeita/genética , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I , Osso e Ossos , Tendões , Mutação/genética
18.
Lancet Rheumatol ; 5(5): e293-e304, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-38251592

RESUMO

Tendinopathy and enthesitis share clinical, anatomical, and molecular parallels. However, their relationship is complex, presenting challenges in diagnosis and treatment. The biomechanics underlying these pathologies, together with relative immune and stromal contributions to pathology, are characterised by crucial comparative elements. However, methodologies used to study enthesitis and tendinopathy have been divergent, which could account for discrepancies in how these conditions are perceived and treated. In this Review, we summarise key clinical parallels between these two common presentations in musculoskeletal medicine and address factors that currently preclude development of more effective therapeutics. Furthermore, we describe molecular similarities and disparities that govern pathological mechanisms in tendinopathy and enthesitis, thus informing translational studies and treatment strategies.


Assuntos
Entesopatia , Medicina , Doenças Musculoesqueléticas , Tendinopatia , Humanos , Irmãos , Tendinopatia/diagnóstico , Doenças Musculoesqueléticas/diagnóstico
19.
J Musculoskelet Neuronal Interact ; 22(4): 486-497, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36458386

RESUMO

OBJECTIVES: This study investigated the effect of lower limb immobilization and retraining on postural control and muscle power in healthy old and young men. METHODS: Twenty men, nine old (OM:67.3±4.4 years) and eleven young (YM:24.4±1.6 years) underwent 2 weeks of unilateral whole-leg casting, followed by 4 weeks of retraining. Measures included center of pressure (CoP) sway length and area during single- and double-leg stance, maximal leg extensor muscle power, habitual and maximal 10-m gait speed, sit-to-stand performance, and 2-min step test. RESULTS: After immobilization, leg extension muscle power decreased by 15% in OM (from 2.68±0.60 to 2.29±0.63 W/kg, p<0.05) and 17% in YM (4.37±0.76 to 3.63±0.69 W/kg, p<0.05). Double-leg CoP sway area increased by 45% in OM (218±82 to 317±145 mm2; p<0.05), with no change in YM (p=0.43). Physical function did not change after immobilization but sit-to-stand performance (+20%, p<0.05) and 2-min step test (+28%, p<0.05) increased in OM following retraining. In both groups, all parameters returned to baseline levels after retraining. CONCLUSION: Two weeks of lower limb immobilization led to decreases in maximal muscle power in both young and old, whereas postural control was impaired selectively in old men. All parameters were restored in both groups after 4 weeks of resistance-based retraining.


Assuntos
Extremidade Inferior , Equilíbrio Postural , Masculino , Humanos , Perna (Membro) , Velocidade de Caminhada , Músculo Esquelético
20.
Exp Gerontol ; 166: 111893, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35870752

RESUMO

Aging is accompanied by morphological and mechanical changes to the intramuscular connective tissue (IMCT) of skeletal muscles, but whether physical exercise can influence these changes is debated. We investigated the effects of aging and exercise with high or low resistance on composition and mechanical properties of the IMCT, including direct measurements on isolated IMCT which has rarely been reported. Middle-aged (11 months, n = 24) and old (22 months, n = 18) C57BL/6 mice completed either high (HR) or low (LR) resistance voluntary wheel running or were sedentary (SED) for 10 weeks. Passive mechanical properties of the intact soleus and plantaris muscles and the isolated IMCT of the plantaris muscle were measured in vitro. IMCT thickness was measured on picrosirius red stained cross sections of the gastrocnemius and soleus muscle and for the gastrocnemius hydroxyproline content was quantified biochemically and advanced glycation end-products (AGEs) estimated by fluorometry. Mechanical stiffness, IMCT content and total AGEs were all elevated with aging in agreement with previous findings but were largely unaffected by training. Conclusion: IMCT accumulated with aging with a proportional increase in mechanical stiffness, but even the relatively high exercise volume achieved with voluntary wheel-running with or without resistance did not significantly influence these changes.


Assuntos
Colágeno , Atividade Motora , Envelhecimento/fisiologia , Animais , Colágeno/fisiologia , Tecido Conjuntivo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...